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Using the multiple-scale perturbation method, the diffraction of a nonlinear nearly 
periodic wavetrain by a vertical circular cylinder is investigated. The envelope of 
the incident wavetrain is assumed to modulate slowly in the direction of wave 
propagation. The relationship between the envelopes of incident and scattered waves 
is derived. It is shown that second-order scattered set-down waves propagate only 
at  the long-wave velocity (gh):. The formula for low-frequency wave forces acting on 
the cylinder is presented. The low-frequency wave forces, which are second-order 
quantities, are caused by set-down waves beneath the wavetrain and the results of 
the self-interactions of the leading-order first harmonic wave components. Numerical 
solutions are presented for the case where the wave envelope varies sinusoidally. 

1. Introduction 
Wave forces acting on piles have been the subject of investigation by many 

researchers for many years. The linear diffraction theory for small-amplitude Stokes 
waves incident on a vertical circular cylinder was due to Havelock (1940) for deep 
water and MacCamy & Fuchs (1954) for a finite depth. Several attempts have been 
made by various researchers to include the effects of finite amplitude (Chakrabarti 
1972; Raman, Jothishanker & Venkatanarasaiah 1977). However, as pointed out by 
Isaacson (1977), these nonlinear theories failed to satisfy all the hydrodynamic 
boundary conditions. Using the method of Fourier-Bessel integral representation for 
the second-order velocity potential, Hunt & Baddour (1981) were able to correct the 
errors and found the second-order wave forces on a circular cylinder in deep water. 
Hunt & Williams (1982) extended the theory for general water depths. 

In Hunt and his colleagues’ work, the second-order Stokes wave was assumed to 
be uniform. Therefore, their second-order wave forces have a frequency which is twice 
that of the carrier-wave frequency. In  practical engineering design, however, i t  is 
more important to find the low-frequency second-order wave forces since the natural 
frequency of the structure and mooring system is usually much lower than the carrier 
frequency. Therefore, it is the objective of this paper to find the second-order 
low-frequency wave forces on a circular cylinder by a second-order Stokes wave whose 
envelope modulates slowly in both space ant time. 

The multiple scales perturbation method is employed here to study the three- 
dimensional problem. The same technique has been developed by Agnon & Mei (1985) 
for a two-dimensional problem. For the present problem, the relationship between 
the incident-wave envelope and that of the scattered-wave envelope is first found. 

t Permanent address: Department of Mechanics, Zhongshan University, People’s Republic of 
China. 
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The scattered-wave envelope propagates in the radial direction with the group 
velocity of the incident-wave envelope. The second-order scattered set-down waves 
are shown to be propagating only with the long-wave speed, (gh);. Unlike the 
two-dimensional problem studied by Agnon & Mei, the self-interaction of the 
first-order scattered waves does not generate any forcing terms for the scattered 
set-down waves. 

The formula for the low-frequency wave forces acting on the cylinder is derived. 
The second-order, low-frequency wave forces are caused by the set-down waves as 
well as the self-interactions of the leading-order first harmonic wave components. 
Numerical results are presented for the case where the envelope of the incident 
wavetrain is a sine function. 

The theory presented herein is restricted to the flow regime wherein flow separation 
does not occur. Therefore the wave amplitude must be much smaller than the 
diameter of the cylinder. 

2. Formulation of the problem 
2.1. Governing equations 

Consider a vertical circular cylinder with radius a ,  being fixed on a horizontal sea 
bottom of depth h. Assuming that the fluid is inviscid and the fluid is irrotational, 
the velocity potential, @(x, y, z, t ) ,  satisfies the Laplace equation 

@ m + @ v g + @ z z  = 0 ( - h  < z < [), 
where 6 denotes the free-surface elevation. The subscripts represent partial differ- 
entiations. The Cartesian coordinate system (2, y, z )  is fixed on the undisturbed free 
surface ; the z-axis coincides with the vertical axis of the cylinder and points upward. 
On the sea bottom, z = -h, and the cylinder, r = a ,  the normal flux vanishes. Thus 

ez = o  ( z = - h ) ,  (2.2) 

djr = 0 ( r  = a) .  (2.3) 

A cylindrical polar coordinate system (r, 8, z )  has also been employed herein for 
convenience. On the free surface, the kinematic condition requires 

while the dynamic condition requires 

2.2. Perturbation equations 
We assume that the incident wavetrain, propagating in the positive x-direction, is 
nearly periodic with frequency w .  The envelope of the incident wavetrain modulates 
slowly in both x-direction and time t. For small-amplitude waves kA = O(a) -4 1, 
where k is the wavenumber of the carrier waves, and the length and time scales of 
the envelope modulation are O(s-l) times 2n/k and 2x/w, respectively. Since similar 
contrast in scale is expected in the scattered-wave field, we introduce the following 
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expansions in terms of the fast (2, y ,  z , t )  and the slow (x, = ex, y 1  = ey,  t, = ~ t )  
variables : 

(2.6) 
@ = E@1(5’ y ,  2’ t’ 21, Y 1 , t l )  +e2@,(x,  y ,  27 t ,  5 1 ,  Y1, t l )  + * - ,I 
5 = e ~ l j 1 ( x , ~ , t , x ~ , ~ ~ , t ~ ) + e ~ 5 ~ ( ~ ,  y , t , q ,  y l , t l ) +  .... J 

Substituting (2.6) into the governing equations (2.1)-(2,5) and collecting the terms 
in the same order of magnitude, we obtain, from the Laplace equation in - h < z < 0 : 

(2.7~) / (2.7b) 
@lZZ + @1yy + @lZZ = 0, 

@222 + @2yy + @a22 = - 2@1zz1 - 2@1YY1’ ... , 
from the free-surface conditions on z = 0 

@ltt +g@P,z = 0, (2.8~) 

1 
@2tt+g@zz = -2@ltt~-~(@~z+@~y+@:z)-- 9 t - ( @ l s @ l t ) z - ( @ l y @ l t ) y ’  

... , (2.8b) 

(2.9~) 

(2.9b) 

1 
Cl = -s @lt’ 

1 
9 

5 2  = -- [ @ 2 t + @ l t z C 1 + @ l t l + ~ ( @ : 2 + @ ~ y + @ l z ) l ’  

from the no-flux condition on the sea bottom ( z  = - h )  

olz = QZz = ... = 0 (Z = - h ) ,  (2.10) 

(2.1 1 a) 
and on the cylinder ( r  = a) 

@1r = 0, 

(2.1 1 b) 

where rl = (x: + y$, and rl = Er. 

i.e. n 

The solution is sought in terms of harmonics with respect to the fast time variables, 

@ n = @nme-imwt, (2.12a) 
m--n 
n e-imwt 

5, = E 5nm 3 

m--n 
(2.12b) 

with [,, = [2-m, etc., where the ‘ * ’  denotes the complex conjugate. We note that 
Qno and Cno denote the wave fields which vary slowly in time. 

2.3. Low-frequency forces on the cylinder 
The pressure at any point in the fluid is given as 

P = P~~--P@lt+~2P[@2t+~(1@1212+l@ly12+@1z12)1+0(~). (2.13) 

The total horizontal wave force on the cylinder in the x-direction can be obtained, 
in principle, by integrating the z-component of the pressure over the surface of the 
cylinder, i.e. 

a( - p )  cos0 dzd0 ( r  = a). (2.14) 
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Since we are interested in the low-frequency forces, which depend on only the slow 
time variable, (2.14) can be reduced to be 

- F, = pa JO s"' qot, case dOdz+pa Joz' c o s ~ { [ ~ - i ~ ~ l l ~ ~ l + c . c . ~ ~ z - o + s ~ ~ l l ~ ~ ~  

-h 0 

0 

+J-, ( I@l1,l2+ 1@lly12+ 1@llz12)  dz} dB ( r  = a) ,  (2.15) 

where the first term denotes the low-frequency wave forces induced by the set-down 
waves beneath the wavetrain, while the second term is the result of the self- 
interactions of the leading-order first harmonic wave component Oil. In the following 
sections, analysis is presented to find the solutions for Gl1 and Gl0 so as to calculate 
the flow-frequency forces from (2.15). 

3. The first-order first harmonic potential, Gl1 
The first-order first harmonic potential, all, satisfies the following equations : 

allr = 0 ( r  = a) .  (3.4) 

In addition, the radiation condition requires that the disturbance caused by the 
circular cylinder must be outgoing at infinity. 

If the leading-order incident wave potential is given as 

cosh k(z+h) eikx - coshk(z+h) 
/3, Jn(kr) cosne, ( 3 . 5 ~ )  -zo A sinhkh 

@:l = A 
sinh kh 

with 
u = k tanhkh, (3.5b) 

where /3, = 1 for n = 0 and /3, = 2in for n 2 1,  the solution to the problem given in 
(3.1)-(3.4) has been given by MacCamy & Fuchs (1954) and can be expressed as 

(3.6) 
coshk(z+h) Z Bn{AJn(kr)-B-Hn(kr) J' (ka) 

@ll = sinh kh n-o H i  (ka) 
where H ,  is the Hankel function of the first kind. In (3.6) the prime denotes the 
derivative of the function with respect to the argument. A(zl, t l )  is the prescribed 
incident-wave envelope and B(zl, yl, tl)  is the envelope of scattered waves to be 
determined. Through the boundary condition (3.4) A and B are related: 

A@,, t l )  = B(z l ,  yl, tl) on r = a. (3.7) 

To obtain the slow modulation of the scattered-wave envelope, B, we must examine 
the second-order first harmonic problem. The governing equations for QSl are 
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where ul = tanh kh, Gn = 8, - Jk(ka) H,(kr) cos no. 
Hk (ka) 

(3.8b) 

( 3 . 8 ~ )  

(3.8d) 

(3.8e) 

The solutions for @21 can be split into two parts: the incident wave component @il 
and the scattered-wave component @:l. Thus 

= @g1 + @i1. (3.9) 
The incident-wave component @il can be readily expressed as (e.g. Mei 1983) 

i(z+h) sinhk(z+h) A,, eik,, 
= - 

sinh kh 

Furthermore, A(xl, t l )  satisfies the conservation equation 

Atl + cg A,, = 0, 

where C, is the group velocity dwldk, which implies 

A = A(xl-Cgtl). 

We propose the solution for @& in the following form: 

(3.10) 

(3.11) 

(3.12) 

1 (z+h) sinhk(z+h) a, @Z1 = C (Bxl Gnx  + ByI G n u )  + %- (3.13) 
sinh kh n-o 

Substituting (3.9)-(3.13) into (3.8), we obtain a set of governing equations for Y&: 

1 (z+h) sinhk(z+h) a) 
X (Bzl Gnx + B y 1  Gny)r  

-_ 
k sinh kh n-o 

( 3 . 1 4 ~ )  

(Z = 0) ,  (3.14b) 

(3 .14~)  

( r  = a) .  (3.14d) 

To ensure the uniqueness of the solution to (3.14), a radiation boundary condition 
is imposed on the scattered-wave potential, i.e. 

Yf1+O asr - j -m.  (3.15) 

Note that for later use the right-hand side of (3.14b) has been denoted as P. 
Since the boundary-value problem for Y:l is a linear one, we can construct the 

solution as the addition of two solutions: one responds to the inhomogeneous 
free-surface boundary condition and the other one results from the inhomogeneous 
condition on the cylinder. Thus 

= q1 + Pfl, (3.16) 
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where Pgl is the solution of the following equations: 
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!PtlX, + !P& + P,s,,, = 0 ( - h < 2 < O ) ,  (3.17 a) 

P:lz-uP:l = P (2 = O ) ,  (3.17 b )  

PflZ = 0 (2  = - h ) ,  ( 3 . 1 7 ~ )  

!Ptlr = o ( r  = a), (3.17d) 

& --ik P:l+O asr-too, (3.17 e) 
(:r ) 

and p:l satisfies the following governing equations 

qlxX+ P:luu+ !P:lzL = 0 ( - h  < 2 < O ) ,  (3.18 a) 

P~lz-uY~l = 0 ( z=O) ,  (3.18b) 

( 3 . 1 8 ~ )  

!@l+O asr+cO. (3.18e) 

The right-hand side of (3.17b) takes the following asymptotic form as r + m :  

where (3.20) 

Since the leading-order term given in (3.19) is a part of solutions for the homogeneous 
problem of (3.17), the particular solution for (3.17) must behave as rP or rk eikr as 
r+ 00, which violates the radiation boundary condition (3.17e), and causes the 
inconsistency in the asymptotic expansion, i.e. 1QZ11 B l@lll as r+m. To eliminate 
this difficulty, we require 

Btl+C,Brl = 0 ,  or B = B(rl-Cgtl ,  8) .  (3.21) 

Therefore, the scattered-wave envelope travels in the radial direction with a speed 
C,. The free-surface boundary condition for Yf1 becomes 

(3.22 a )  

O0 2wi 

1 O0 2iw 
Q = -  n-0 - - ( B , l [ C , - g , ( ~ ~ e i k r c o s n e  GI 

Bxl Gnx + BUI Gnu - BrI ik 

(3.22 b )  

The solutions for the second-order potentials YZl can be obtained by Weber’s method 
(Hunt & Williams 1982). They do not play any role in calculating the low-frequency 
forces and will not be presented here. 
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Combining (3.21) with (3.7) and (3.12), we obtain 

B ( ~ ~ - C , ~ ~ ,  e) = ~[~,-c,t ,-€a(i-cose)].  (3.23) 

Since the envelope of the incident wavetrain, A(zl - C, tl), is prescribed, the envelope 
of the scattered waves can be found from (3.23) by substituting z1 by 
[rl - €a( 1 - cos e)]. The solution for @ll is, therefore, completed. We now turn our 
attention to the solution for Ql0. 

4. The first-order zeroth harmonic potential 

governed by the following equations : 
From the zeroth harmonic of (2.7a)-(2.11a), the short-scale variation of Ql0 is 

@1022+@10yy+@10zz = 0 ( - h  < z -c 01, ( 4 . 1 ~ )  

alOz = 0 ( z  = 0 and -h) ,  (4.lb) 

@,,, = 0 ( r  = a). (4.1 c) 

The only possible solution for (4.1) describes a circulation motion; i.e. 
Gl0 - 8 = tan-’ (zly). This type of solution is, however, discarded in the present 
analysis since the incident waves do not contain the first-order low-frequency 
velocity. Therefore, al0 = @lo(zl, y,, tl) is independent of fast variables. 

The long-scale equations for @lo could be obtained from the third-order zeroth 
harmonic equations of the basic perturbation equations. Alternatively, following 
Agnon & Mei’s (1985) approach, we substitute the solution series (2.6) into the 
continuity equation 

and collect the third-order terms. Thus 

0 

+[ /:h ~ @ l z l + @ 2 z ~ ~ ~ + S l ~ 1 2 ] 2 1 + [  (@lY1+@2,)dz+Sl@lv] Y1 

+[ @, (@lZ2+@2z1+@3Z)dz]2+[ ( @ l Y p + @ 2 1 1 + @ 8 1 )  dz] Y 

+ (S1 @IZl + 5, @BZ + S2 @12 + % @lZZ)S + (Sl @lYl  + Sl @2Y + f @lY +% @lVZ)V = 0. 
(4.3) 

Substituting (2.12) into (4.3) and collecting the zeroth harmonic terms, we obtain 

where F ( z ,  y, z, t) is a function of fast variables and is the result of cross-products 
between incident waves and scattered waves M well as the self-products of scattered 
waves. We remark here that because of the three-dimensionality the scattered-wave 
amplitude must be a function of r ,  the fast variable. In  fact, from (3.6) or the required 
radiation boundary condition the scattered-wave field behaves as r-f ei(kr-ot) as kr 
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becomes large. Therefore the self-product of the scattered-wave field must be a 
function of vast variables. The function F contributes only to the third-order solution 
of Equating all terms involving only the slow variables, we obtain the 
boundary-value problem for CPl0 : 

2w 

@lor, = 0 ( r  = a), (4.6) 

where (3.12) has been employed. 
The right-hand side of (4.5) represents the forcing terms for the set-down waves 

in the incident waves. We can, therefore, separate the total potential into two parts: 

@lo = @:o+ @So, (4.7) 

where @io is the incident-wave potential, which is given as 

and @So denotes the scattered-wave potential, satisfying 

1 
@Sox1 2, + @Soy, y1 -- @Sot1 t l  = 0, 

9h 
(4.9) 

@sorl = ( r  = a) .  (4.10) 

The scattered low-frequency waves propagate with the shallow water wave velocity, 
(gh)k To find the specific solution form for the scattered-wave potential, we must 
describe the envelope of the incident waves. However, without losing generality, we 
assume that @io can be written in a form of Fourier series 

0 J+c.c. 
i m  

@:o = c __  z c ein(kozl-w t 
0 1  

ko n-1 

i m  

ko n-1 m-0 

m 
(4.11) 

where k, denotes the wavenumber of the envelope of incident waves and wo = C, k,. 
The coefficients C, (n = 0,1,2, ...) are determined from (4.8) for a specific A. The 
solution to (4.9) and (4.10) can be obtained as 

= C 0 1  x -- z C ,  e-inwotl X p, Jm(konrl) cosnO+c.c., 

x H,(aokonrl) cosmO+c.c. (4.12) 

Thus the long-scale potential can be found from (4.7), (4.11) and (4.12). We remark 
here that the scattered-wave potential satisfies the radiation boundary condition : 

(4.13) 

where k, = a, kon and @fbn is the nth wave component of the scattered-wave 
potential @so. The complete solution for the slow variable potential al0 is the 
summation of (4.11) and (4.12) as suggested by (4.7). 
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5. Low-frequency forces on the cylinder 

the formula for low-frequency wave forces on the cylinder in the following form: 
Using the solutions for Qll, (3.6), and @lo, (4.11) and (4.12), we can now rewrite 

2K 

jl = pah J c~~~~~ cose dB 
0 

Hl(a,nk, a) + C.C. 

(5.1 b )  
1 J W O  a )  

010 m a ,  nk, a )  

i m  

ko n-1 
= - 2paho, x - x C ,  e-inwo t 1  

and 

with 911 = Vl @ l l L 0 3  

O cosh2 k ( z + h )  dz. 
= J-h sinh2 kh 

(5.1 c )  

(5 . ld)  

(5.1 e )  

Note that the cylindrical coordinates ( r ,B ,z )  have been employed in ( 5 . 1 ~ )  for 
convenience. In  principle, (5.1 c )  can be integrated numerically once A is given. 

For the cases where the diameter of the cylinder is the same order of magnitude 
as the wavelength of the carrier waves, we can neglect the ea cos0 term in (3.23) in 
the neighbourhood of the cylinder. Thus, the boundary condition (3.7) can be 
approximated as 

Using this approximation, (5.1 c )  can be integrated analytically and gives 

B(r1, t,, 0 )  = A( -C, tl)  ( r  = a ) .  (5.2) 

pxG a, +- Z n(n+ 1) (P, P:,, + c.c.), (5.3) 
2a n-1 

where 

and P,* is the complex conjugate of P,. 

5.1. A numerical example 
We consider the incident-wave envelope as sinusoidal ; i.e. 

A =-A, 9 sink, (x l -Cut l ) ,  
w 

(5.4) 

(5.5) 
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8 ,  

log,,, CFl 

0 0.1 0.2 0.3 0.4 0.5 
kh 

FIGURE 1.  Force coefficient CF1 aa a function of kh with 0(1) k,a. 

where A, denotes the wave amplitude and 2 x / k ,  represents the wavelength of the 
wave envelope. Substituting (5.5) into (4.10) and (4.11), we obtain 

It follows, from (5 . lb ) ,  that the low-frequency wave forces induced by the set-down 
waves can be written as 

where A, represents the amplitude of the oscillations of the set-down waves. Thus 

We can defke the maximum horizontal force coefficient CF1 as follows : 

In figure 1 we show the variation of CF1 as a function of both k,  a and kh with values 
of k,a, being O(1). The force coefficient increases rapidly as kh decreases, which is 
caused by the fact that Cg+gh, A ,  and fi+ a as kh+O. The wave forces approach 
zero when the diameter of the circular cylinder becomes small, i.e. k,a+O (figure 2 ) .  
As shown in figure 2 ,  the force coefficient is very sensitive to the water depth in terms 
of both magnitude and its dependence on k,a. For the intermediate water depth, 
kh x O(l) ,  the force coefficients vary oscillatory as a function of k,a. The amplitudes 
of oscillations decrease as kh decreases and k, a increases. Using the same normalization 



Wave forces on a vertical cyEinder 153 
10 

(4 

CFl x lo-' 

0 2 4 6 
k0 0 

*t  

0 2 4 6 
k0 a 

2.0r 1.5 

CFl 
1 .o 

0.5 

I I I 
0 2 4 

k0 a 

FIQURE 2. Force coefficient CF1 aa a function of k,a: (a) 0.25 < kh < 0.27, (b)  1.0 < W < 1.5, 
(c) 1.8 < kh < 2.4. 

factor as that defined in (5.9), we can introduce the maximum horizontal force 
coefficient CF2 corresponding to f2 as follows : 

(5.10) 

Equation (5.3) is used in (5.10) to find CF2 as a function of kh and ka. Sincef, is 
generated by the self-products of the first-order wave motion, CF2 is not a function 
of the parameters associated with the envelope, i.e. koa. As shown in figure 3, the 
wave force component has a maximum value at ka x 1.0 independent of kh. The wave 
forces also increase as kh decreases. 
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CF2 
20 

10 

0 2 4 6 
ka 

3 

CF2 

2 

1 

0 2 4 6 
ka 

8 

6 

CF2 

4 

2 

0 2 4 6 
ka 

0 2 4 6 
ka 

RIQURE 3. Force coefficient CF2 as a function of ka:  (a) 0.4 < kh < 0.55, ( b )  0.6 < kh < 0.9, 
( c )  1.0 < kh < 1.5, (d) 1.5 < kh < 2.5. 

6. Concluding remarks 
In this paper, we have presented a complete solution for the diffraction of a slowly 

modulating wavetrain by a vertical circular cylinder, up to the second order of kA. 
Two important results have been obtained in the process of deriving formula for 
low-frequency wave forces : (1) the relationship between the incident-wave envelope 
and the scattered-wave envelope is given in (3.23), which suggests that the scattered- 
wave envelope propagates in the radial direction with the group velocity C,  of the 
incident wavetrain, and (2) the scattered second-order set-down waves propagates 
with the long-wave speed (gh);, (4.9). The first result seems to be associated with the 
geometry of the circular cylinder, but the second result does not. It would be 
interesting to extend the present theory to problems involving scatterers with 
arbitrary geometries. Laboratory experiments should also be performed to measure 
the low-frequency wave forces so as to verify the present theory. 
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